蛟龙app

当前位置: 首页 >> 师资队伍 >> 博士生导师 >> 正文



刘振海

2014年04月27日 21:59  点击:[]

刘振海教师简介

 

 

姓名

刘振海

职称

教授

学位

博士

Email

zhhliu100@126.com

电话

0771-3265663

通信地址

蛟龙app

邮编

530006

研究方向

非线性偏微分方程、分数阶微分方程、(偏)微分方程的能空性和控制理论、复杂系统的建模与控制、数学生态学模型、工程与管理优化、博弈与均衡理论与算法

兴趣爱好

游泳、打乒乓球、旅游

主讲课程/工作岗位:

二阶椭圆形方程、常微分方程、实变函数论、抽象空间中的微分方程、分数阶微分方程理论、线性算子半群、非线性分析等

 

学术责任与荣誉:

湖南省新世纪121人才工程第一层次人选;

享受国务院“政府特殊津贴”的专家;

电力部跨世纪学术和技术带头人培养对象;

2014年度广西自然科学奖二等奖(排名第一《非线性偏微分方程的若干问题研究》(2015-2

2009年度湖南省自然科学奖二等奖(排名第一)《偏微分不等式及其相关问题》;(2009-19

2003年 湖南省科技进步奖三等奖(排名第一);《H-半变分不等式理论与应用》(2003-01

2000年 湖南省先进工作者;

1999年曾宪梓教育基金会优秀奖三等奖。

美国《数学评论》特约评论员

2015年广西特聘专家

广西数学会副理事长

 

自我介绍:

刘振海,1994年匈牙利科学院博士,2005.01-2009.12中南大学特聘教授(升华特聘教授)2009年调入广西民族大学,现任理学院教授,优化控制与工程计算重点实验室主任。

热烈欢迎有志青年报考我的研究生:

博士导师刘振海,在南京理工大学理学院担任博士生导师,报考的研究方向:1. 应用偏微分方程; 2.分数阶微分方程;3.非线性分析方向的博士生。已毕业博士12人、在读博士生3人。

硕士导师刘振海,在蛟龙app担任硕士导师,报考专业: 1. 应用数学; 2.计算数学,这两个硕士点招收硕士生。

主要学术交流:

20165月至6月香港中文大学数学研究所,        学术访问教授(访问辛周平教授)

20158月至9月波兰Jagiellonian大学,        学术访问教授(访问Migorski教授)

20156月至7月法国Perpignan大学,            学术访问教授(访问Sofonea教授)

20145月至6月法国Perpignan大学,        学术访问教授(访问Sofonea教授)

20143月至4月波兰Jagiellonian大学,       学术访问教授(访问Migorski教授)

20139月至9月智利圣玛利亚技术大学数学系,  学术访问教授(访问Ivan  Szanto教授)

20132月至3月香港中文大学数学研究所,    学术访问教授(访问辛周平教授)

20111月至3月香港中文大学数学研究所,    学术访问教授(访问辛周平教授)

200811月至12月香港中文大学数学研究所,  学术访问教授(访问辛周平教授)

20086月一个月俄罗斯Kazan大学数学研究院,学术访问(访问I.Konnov教授)

20076月至7月复旦大学数学院,访问教授;    学术访问(访问程晋教授)

20073月至5月香港中文大学数学研究所,    学术访问(访问辛周平教授)

20065月至8月土耳其”Kocaeli”大学,     学术访问(访问Hasanov教授)

20062月至3月香港中文大学数学研究所,    学术访问(访问辛周平教授) 

20031020043月以色列工程技术学院,  学术访问(访问A.Ioffe教授)

20039月至10月俄罗斯科学院西伯利亚分院,学术访问(访问A.A.Tolstonogov教授)

20017月至9月中科院应用数学研究所,      学术访问(访问丁夏畦院士)

19999月至20003月英国“牛津”大学,  学术访问(访问J.Ball教授) 

 

在研主要项目:

1.    主持《偏微分变分不等式及其应用》国家自然科学基金项目 (50万元), (批准号:11671101,  2017.1--2020.12);

2.    主持《H-半变分不等式的非线性扰动与分数阶问题》国家自然科学基金项目 (70万元), (批准号:11271087,  2013.1--2016.12);

3.    主持《H-半变分不等式分布参数系统辨识与最优控制问题》国家自然科学基金项目 (44万元), (批准号:61263006,  2013.1--2016.12);

4.    主持《非线性H-半变分不等式的最优控制问题研究》广西自然科学基金重点项目(30万元),(批准号:2014GXNSFDA118002 2014.6-2017.5);

5.    参与(主研人员):《Nonsmooth  Systems in Mathematical Theory of Contact Mechanics》, the “Maestro Advanced Project” to  the National Science Center in Poland. (440,000  Euro,   April  18, 2013 to April 17, 2018).《接触力学数学理论中的非光滑动力系统研究》波兰国家科学中心“迈斯卓研究计划”,资助金额44 万欧元,自2013 4 18 日起,至2018 4 17 日止。No. UMO-2012/06/A/ST1/00262 

已完成项目:

6.    参与(主研人员):《“Nonlinear  Inclusions, HemivariationalInequalities with Applications to  Contact Mechanics》,Research  Executive Agency in Brussels, Belgium for the Marie Curie International  Research Staff Exchange Scheme Fellowship within the 7th European Community  Framework Programme ( 176,400 Euro , April 1, 2012 to April 1, 2016.Grant  Agreement No. PIRSES-GA-2011-295118). 《非线性包含、H-变分不等式在接触力学中的应用》, 欧盟第七框架计划“居里夫人国际科研基金会”资助,(176,400欧元,自201241日起,至201641日止。No.PIRSES-GA-2011-29511 

7.    主持《国内外理科研究生的创新培养模式研究》广西研究生教育创新计划资助项目(6万元),(批准号:JGY20140562014.1-2015.12);

8.    主持(已结题)《控制与优化中的数学方法及其应用》国家自然科学基金中俄国际合作项目(9万元),(批准号:111101162012.12013.12.

9.    主持(已结题)H-半变分不等式理论中的若干新问题》国家自然科学基金项目 (26万元), (批准号:10971019, 2010.1--2012.12);

10.   主持(已结题)非线性H-半变分不等式及其相关问题研究》广西自然科学基金项目(4万元),(批准号:2010GXNSFA0131142010.3-2013.3);

11.   主持(已结题)接触问题中的H-半变分不等式研究》广西教育厅重点项目  (3万元),(批准号:No.201012MS0672010.1-2012.12);

12.   主持(已结题)优化与控制中的数学方法及其应用》中国科技部国际合作项目(资助双方访问所需费用)(批准号:NoCR14-162010.1-2011.12);

13.   主持(已结题)《非线性发展型H-半变分不等式及其应用》(22万元),  国家自然科学基金项目(批准号:10671211, 2007.1--2009.12);

14.   主持(已结题)《非单调变分不等式的解法研究》(9万元),国家自然科学基金中俄国际合作项目(批准号:108111200182008.1-2009.12);

15.   主持(已结题)随机非线性发展方程与随机动力系统》(2万元)国家自然科学基金国际合作项目(批准号:108103010572008.9-2009.12

16.   主持(已结题)《不适定问题的迭代正则化方法及其应用》(2万元),湖南省自然科学基金项目(批准号:07JJ30052008.1-2009.12);

17.   主持(已结题)《数学物理反问题的研究》(60万元),中南大学“升华特聘教授”启动基金项目(2005.1-2009.12  

18.   主持(已结题)H-半变分不等式控制系统的优化与识别》5万元) 湖南省自然科学基金重点项目 (No.05JJ20003, 2004.1.-2006.12.)

19.   主持 (已结题)H-半变分不等式的理论与应用》 13万元)国家自然科学基金( No.101710082002.1.-2004.12. 

20.   主持(已结题)《发展型控制系统的优化与识别及其对H-半变分不等式的应用》9万元) 国家自然科学基金中俄国际合作项目 (No.1041120097,2003.1-2004.12)

21.   主持 (已结题)《非线性科学中的H-半变分不等式》5万元) 教育部科学技术重点项目(No.01084 2001.1.-2003.12.)

22.   主持已结题)《非线性科学中的H-半变分不等式》(3万元) No.01A0252001.1.-2003.12.)湖南省教育厅科研重点项目 

23.   主持(已结题)《非线性发展型偏微分方程》(3万元)(1996.11997.12)  教育部回国留学人员基金。

24.   主持(已结题)《最优控制系统的微分方程理论及其在电力系统的应用》(1万元)(1995.11996.12)  中华电力教育基金。  

25.    主持(已结题)《非线性发展型H-半变分不等式》(2万元)  1995.11996.12    湖南省自然科学基金 

 

主要论文/专著(2008-今):

1.    Liu ZH,  Zeng SD, Motreanu D., Evolutionary problems driven by variational  inequalities, Journal of Differential Equations, 260(2016) 6787-6799.

2.    Liu ZH,  Zeng SD, Bai YR, Maximum principles for multi-term space-time variable-order  fractional diffusion equations and their applications, Fractional Calculus  & Applied Analysis, 19(1)(2016) 188-211.

3.    Liu ZH,  Zeng SD, Equilibrium problems with generalized monotone mapping and its  applicationsMath. Meth.  Appl. Sci. 2016, 39 152–163.

4.    Liu ZH,  Zeng SD, Zeng B, Well-posedness for mixed quasi-variational hemivariational  inequalities, Topological Methods in Nonlinear Analysis,  47(2) (2016),  561–578

5.    Liu ZH,  Zeng B, Existence results for a class of hemivariational inequalities  involving the stable (G,F,ɑ)-quasimonotonicity,  Topological Methods in Nonlinear Analysis, 47(1) (2016), 195–217.

6.    Lu L., Liu  ZH, Bin MJ, Approximate controllability for stochastic evolution inclusions  of Clarke’s subdifferential type, Applied Mathematics and Computation,  286(2016) 201-212.

7.     Liu ZH, Li XW,  , SIAM Journal on Control and Optimization, 53(4)(2015)  1920-1933.

8.        Liu ZH, Li XW, Approximate  controllability for a class of hemivariational inequalities, Nonlinear  Analysis: Real World Applications, 22(2015) 581-591.

9.        Liu ZH, Zeng B., Optimal Control of  Generalized Quasi-VariationalHemivariational Inequalities and Its Applications, Appl Math  Optim, 72 (2015)  305-323.

10.Liu ZH,  Zeng B., Existence and controllability for fractional evolution inclusions of  Clarke’s subdifferential type, Applied Mathematics and Computation,   257(2015)178-189.  

11.Liu ZH, Tatar S, Ulusoy S, Zeki M,  Structural stability for the Morris–Lecar neuron model, Applied Mathematics and Computation,  270(2015)  261-268.  

12.Gasi´nski L, Liu ZH, Migórski S, Ochal A, Peng Z, Hemivariational  Inequality Approach to Evolutionary Constrained Problems on Star-Shaped Sets,  J Optim Theory Appl (2015) 164:514–533.

13.Huang Y, Liu ZH, Migorski S., Elliptic Hemivariational  Inequalities with Nonhomogeneous Neumann Boundary Conditions and Their  Applications to Static Frictional Contact Problems, Acta Appl Math (2015)  138:153–170.

14.Huang Y,  Liu ZH, Zeng B, , Computers  and Mathematics with applications, )(2015) 2125-2136.

15.Loi NV, Liu ZH, Obukhovskii V, , Fixed Point Theory, 16(1)   (2015),  127-141.

16.Lu L., Liu ZH, Existence and controllability results for  stochastic fractional evolution hemivariational inequalities, Applied  Mathematics and Computation, 268(2015)1164-1176.

17.Xiao CE, Zeng B, Liu ZH, Feedback control for fractional impulsive  evolution systems, Applied Mathematics and Computation, 268 (2015) 924–936.

18.Liu ZH, Bin MJ, Approximate controllability of impulsive  Riemann-Liouville fractional equations in Banach spaces, Journal of Integral  Equations and Applications, 26(4) (2014)527-551.

19.Liu ZH,  Migorski S., Analysis and control of differential inclusions with  anti-periodic conditions,  Proceedings of the Royal Society of  Edinburgh, 144A(3), (2014)591-602.

20.Liu ZH,  Wang R., Quasilinearization method for fractional differential equations with  delayed arguments,Applied Mathematics and Computation, 248(2014)301-308.

21.Liu ZH,  Liang JT, Multiple Solutions of Nonlinear Boundary Value Problems for  Fractional Differential Equations,  Bull. Malays. Math. Sci. Soc. (2)  37(1) (2014), 239–248.  

22.Liu ZH,Lu  PF, Stability analysis for HIV infection of CD4+ T-cells by a fractional  differential time-delay model with cure rate, Advances in Difference  Equations 2014, 2014:298,1-20.

23.Liu ZH, Liu  Q, Persistence and extinction of a stochastic delay predator-prey model under  regime switching, Applications of Mathematics,  59(3), (2014) 331–343.

24.Liu ZH,  Wang R. Zhao J., Quasilinearization for fractional differential equations of  Riemann-Liouville  type, Miskolc Mathematical Notes, 15 (1)(2014), pp. 141–151.

25.Z.H.  Liu, J. Y. Lv, R. Sakthivel, Approximate  controllability of fractional functional evolution inclusions with delay in  Hilbert spaces, IMA Journal of Mathematical Control and Information, 31(3), (2014),  363-383.

26.Liu XY, Liu ZH, Fu X., Relaxation in nonconvex optimal control  problems described by fractional differential equations, Journal of  Mathematical Analysis and Applications, 409(1), (2014), 446-458.  IDS号:225PL, ISSN:0022-247X.

27.Liu XY, Liu ZH, On the ‘bang-bang’ principle for a class of fractional  semilinear evolution inclusions,  Proceedings of the Royal Society of  Edinburgh,144A(2), (2014)333-349.

28.Liu XY, Liu ZH, Relaxation control for a class of evolution  hemivariational inequalities, Israel Journal of Mathematics, 202 (2014),  35–58.

29.Liu XH, Liu ZH, Bin MJ,  Approximate controllability of  impulsive fractional neutral evolution equations with Riemann-Liouville fractional  derivatives, J. Computational  Analysis and Applications,  17(3),  2014, 467-485.  

30.Liu, XH; Liu, ZH; Bin, MJ, ,  Abstract and Applied  Analysis, Volume 2014(2014), Article ID 142067, 9 pages.

31.Liu Q, Chen QM, Liu ZH,  Analysis on stochastic delay LotkaVolterra systems driven by Lévy  noise,  Applied Mathematics and Computation 235 (2014) 261271.

32.Z.H.  Liu,  J. Y. Lv, R. Sakthivel, Approximate controllability of fractional functional  evolution inclusions with delay in Hilbert spaces, IMA Journal of Mathematical  Control and Information (2013) Page 1 of 21,  doi:10.1093/imamci/dnt015

33.Liu XY, Liu  ZH, Fu X., Relaxation in nonconvex optimal control problems described by  fractional differential equations, Journal of Mathematical Analysis and  Applications, 409(1), (2014), 446-458.  

34.Liu XY, Liu  ZH, On the ‘bang-bang’ principle for a class of fractional semilinear  evolution inclusions,  Proceedings of the Royal Society of  Edinburgh,144A(2), (2014)333-349.

35.Liu ZH, Li  XW, Sun JH, Controllability of nonlinear fractional impulsive evolution  systems,   Journal of Integral Equations and Applications,   25(3) (2013), 395-405.  

36.Liu ZH,  Liang Jitai, A class of boundary value problems for first-order impulsive integro-differential  equations with deviating argumentsJournal of Computational and  Applied Mathematics 237 (2013) 477486.

37.Liu ZH, Sun JH, Szanto, I, Monotone Iterative  Technique for Riemann–Liouville Fractional Integro-Differential Equations  with Advanced Arguments, Results. Math. 63 (2013), 1277–1287.

38.Liu ZH,  Nguyen Van Loi; Obukhovskii, Valeri, Existence and global, International  Journal of Bifurcation and Chaos, (2013).Vol. 23,No. 7: 1350125,1-10.

39.Liu ZH, Lu L.,  Szántó I., Existence of solutions for fractional impulsive differential  equations with p-Laplacian operator, Acta Mathematica Hungarica, 141 (3)  (2013), 203-219.

40.Peng Z.,Liu  ZH, Liu X. Boundary hemivariational inequality problems with doubly nonlinear  operators, ,   2013, 356(4), 1339-1358.

41.Liu XY, Liu ZH, Existence results for a class of second  order evolution inclusions and its corresponding first order evolution  inclusions, Israel Journal of Mathematics 194 (2013), 723–743.

42.Liu ZH, Li Xiuwen,  Existence and uniqueness of solutions for the nonlinear  impulsive fractional differential equations,  Commun Nonlinear Sci Numer  Simulat 18 (2013) 13621373.

43.Liu ZH, Li  Xiuwen,  On the Controllability of Impulsive Fractional Evolution  Inclusions in Banach Spaces,  J Optim Theory Appl (2013) 156:167–182.

44. Zhang, Zai-Yun; Liu, ZH; Gan, Xiang-Yang,  , Applicable Analysis, Vol.  92, No.10, (2013) 2021-2048.

45.Liu ZH, Han  JF, Fang LJ, Nonlinear boundary value problems for first order integro-differential  equations with impulsive integral conditions, Bull. Malays. Math. Sci. Soc.  36(2)(2013),435-446.

46.Liu YL, Liu  Q., Liu ZH, Dynamical behaviors of a stochastic delay logistic system with  impulsive toxicant input in a polluted environment, Journal of Theoretical Biology,  329 (2013) 1–5.  

47.Liang JT,Liu ZH, Wang XH,  Solvability  for a couple system of nonlinear fractional differential equations in a  Banach space,, 2013,  Volume 16, , 51-63.

48.Liu ZH, Sun  JH, Nonlinear boundary value problems of fractional functional integro-differential  equations, Computers and Mathematics with Applications 64 (2012) 32283234.  

49.Liu ZH, Tatar  S., Analytical solutions of a class of inverse coefficient problems,  Applied  Mathematics Letters 25 (2012) 23912395.

50.Liu ZH, Sun  JH, Nonlinear boundary value problems of fractional differential systems, Computers  and Mathematics with Applications 64 (2012) 463-475.

51.Liu ZH, Lu  L., A class of BVPs for nonlinear fractional differential equations with  p-Laplacian operator, , No. 70 (2012), pp. 1-16.

52.   Liu ZH, Han JH,  Integral  boundary value problems for fractional order integro-differential equations, Dynamic  Systems and Applications 21 (2012) 535-548.

53.   Liu XY, Liu ZH,  Existence results for fractional semilinear  differential inclusions in Banach spaces, J Appl Math Comput. DOI  10.1007/s12190-012-0634-0

54.   Liu ZH, Han JF., Fang LJ., Integral  boundary value problems for first order integro-differential equations with  impulsive integral conditions, Computers and Mathematics with Applications 61  (2011) 30353043.

55.   Liu ZH, Szanto I., Inverse coefficient problems for parabolic  hemivariational inequalities, Acta Mathematica Scientia,  2011,31B(4):13181326.

56.   Liu ZH, Han J.F. Boundary value problems for second order  impulsive functional differential equations, Dynamic Systems and Applications  20 (2011) 369-382

57.Peng ZJLiu  ZH, Evolution hemivariational inequality problems with doubly nonlinear  operators, J Glob Optim (2011) 51:413–427.

58.Liu J, Liu ZH,  On the existence of  anti-periodic solutions for implicit differential equations, Acta Math.  Hungar, 132(3)2011,294-305.

59.Ou YH, Zhao J, Liu ZH, Tang J,  Determination  of the unknown time dependent coefficient p(t) in the parabolic equation ut =  Δu + p(t)u + ?(x, t), J. Inv. Ill-Posed Problems 19 (2011), 525–531.

60.   ,  

61.   Li Yunxiang, Liu ZH, Dynamic  contact problem for viscoelastic piezoelectric materials with normal damped  response and friction, Journal of Mathematical Analysis and Applications,  373(2)(2011)726-738. 

62.   Deng YJ, Liu ZH, New fast iteration for determining surface  temperature and heat flux of general sideways parabolic equation, Nonlinear  Analysis: Real World Applications, 12(1)(2011) 156-166.

63.    Peng Z., Liu ZH, A note on multivalued Wλ0 pseudomonotone map, Applied Mathematics Letters 24 (2011)  1204–1208.

64.    Zhang ZY, Liu ZH,  Miao XJ, Chen YZ, Qualitative analysis and traveling wave solutions for the  perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity, Physics  Letters A 375 (2011) 12751280

65.    Zhang ZY, Liu ZH, Miao XJ, Chen YZ, Global  existence and uniform stabilization of a generalizeddissipative Klein–Gordon  equation type with boundary damping, JOURNAL OF MATHEMATICAL PHYSICS 52,  023502 (2011) 

66.    Zhang, ZY; Li, YX;  Liu, ZH,  , COMMUNICATIONS IN  NONLINEAR SCIENCE AND NUMERICAL SIMULATION,16(8), (2011)3097-3106.

67.   Zhang ZY, Liu ZH,  Global Attractor for the Generalized Dissipative KDV Equation with  NonlinearityInternational Journal of Mathematics and  Mathematical SciencesVolume 2011, Article ID 725045, 21  pages  doi:10.1155/2011/72504

68.   Liu ZH, , Journal of  functional analysis, 2586(2010)  : 2026-2033.

69.   Liu ZH  , Motreanu D., A class of  variational–hemivariational inequalities of elliptic type, Nonlinearity 23  (2010) 1741–1752.

70.   Liu ZH, , Proceedings  of the Royal Society of Edinburgh Section-a-mathematics, 140(2) (2010):  419-43

71.   Liu ZH, SAEZ E, SZANTO I., A system of degree four with an  invariant trangle and at least three small amplitude limit cycles, Electronic  Journal of Qualitative Theory of Differential Equations ,2010, No. 69, 1-7

72.   , , , Determination  of a source term in a heat equation, International journal of computer  mathematics, 87(5)(2010): 969-975

73.   Zeng XZ, Liu ZH,  Nonlinear Analysis-real world applications,  111)(2010: 372-390 .

74.   Xiao CE,Liu ZH,  Inverse Coefficient Problems for Elliptic  Hemivariational Inequalities,  CHINESE ANNALS OF MATHEMATICS SERIES  B    31(4)(2010):  473-480

75.   Xu YJ, Liu ZHExact Controllability to Trajectories for a Semilinear Heat  Equation with a Superlinear NonlinearityActa. Appl. Math. (2010) 110: 57–71

76.   Xu YJ, Liu ZHControllability for a parabolic equation with a nonlinear term  involving the  state  and  the gradient , ,  ), (2010): 1593-1604.

77.   Zeng XZ, Liu ZH , , Acta Mathematica Scientia, 30(3), (2010)713-725.

78.   Li Yunxiang, Liu ZH, A quasistatic contact problem for viscoelastic materials with  friction and damage, Nonlinear Analysis 73 (2010) 2221-2229.

79.   Zhang Zai-yun, Liu ZH, Stability analysis of heat flow with  boundary time-varying delay effect, Nonlinear Analysis 73 (2010) 1878-1889.

80.   Zhang Zai-yun, Liu ZH, New exact solutions to the perturbed  nonlinear Schrdingers equation with Kerr law nonlinearity, Applied Mathematics and  Computation 216 (2010) 3064-3072.

81.   Zhang ZY, Liu ZH, Miao XJEstimate on the Dimension of Global Attractor for Nonlinear  Dissipative Kirchhoff  EquationActa Appl Math (2010) 110: 271–282.

82.   Konnov I.V., Liu ZH, Vector Equilibrium Problems on Unbounded Sets Lobachevskii Journal of  Mathematics, 2010, Vol. 31, No. 3, pp. 232238

83.   , Iteration methods on sideways  parabolic equationsINVERSE PROBLEMS 259)(2009  

84.   Li YX, Liu ZH, Dynamic contact problem for viscoelastic  piezoelectric materials with slip dependent friction , Nonlinear  Analysis,TMA. 71,(2009) 1414-1424.

85.   Li, J; Liu, ZH Convergence rate analysis for parameter identification with  semi-linear parabolic equation JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 17(4), (2009), 375-385.

86.   Xu YJ,Liu ZH, Li J, Identification of nonlinearity in  k-approximate periodic parabolic equations,Nonlinear Analysis, TMA. 71 (2009)  691-696.

87.   Liu ZH, Wang BY, Coefficient identification in parabolic equations,  Applied Mathematics and Computation, 209(2009)379-390.

88.    Liu ZH, Migorski S.A note on a paper by Su Ke and He Zhen, Appl. Math. Lett. 22 (1)  (2009), 56-57.

89.    Liu ZH, Existence results for quasilinear parabolic hemivariational  inequalities, J. Differential  Equations, 244(2008)1395-1409.

90.    Liu ZH, Liu GF, On eigenvalue problems for elliptic hemivariational inequalities,   Proceedings of Edinburgh Mathematical Society, 51 (2008)407-419.

91.    Liu ZH, Migorski S.Noncoercive damping in dynamic hemivariational inequality with application  to problem of piezoelectricity,  Discrete and continuous dynamical  systems series B, 9(1) (2008), 129-143

92.    Liu ZH, Li Jing, Li ZW, Regularization method with two parameters for  nonlinear ill-posed problems, Science in China Series A: Mathematics, 51(1)  (2008),70-78.

93.   Liu ZH, Migórski S.  Ochal A., Homogenization of boundary hemivariational inequalities in linear  elasticityJournal  of Mathematical Analysis and Applications 340220081347-1361

94.   Hasanov A., Liu ZH, An inverse coefficient problem for a nonlinear parabolic  variational inequality. Appl. Math. Lett. 21(6)(2008), 563-570.

95.   Liu ZH, Saez E.,Szanto  I., Limit cycles and invariant parabola in a kukles system of degree three,  Acta  Mathematica Scientia  28B (3)(2008) 312--321

96.   Deng YJ, Liu ZH, Two derivative-free algorithms for nonlinear equations Optimization Methods and  Software, 23(03)(2008), pp. 395 - 410.

 

 

 

 

 

 

 

 

上一条:吴尽昭

关闭



蛟龙app  地址:广西南宁市大学东路188号
电话:3260133  邮编:530006